

声学晶体中的自旋拓扑相

mengy@sustech.edu.cn

- Backgrounds of topology
- Motivation for spinful topological phases
 Why?

> Analytical model for spinful topological phases

> Sample design and experimental demonstration

> Conclusions

What?

How?

Background of topological insulators

2016 Nobel Prize

© Nobel Media AB. Photo: A. Mahmoud David J. Thouless Prize share: 1/2

Mahmoud F. Duncan M. Haldane Prize share: 1/4

a

Genus = 0

© Nobel Media AB. Photo: A. Mahmoud J. Michael Kosterlitz Prize share: 1/4

The Gauss–Bonnet theorem: $\frac{1}{2\pi} \int_{surface} K dA = 2(1-g)$ Gaussian Curvature: $K = 1/(R_1R_2)$

 $k^{\pi/a}$ -π/a 0

Berry phases and curvatures

Berry connection

 $\mathbf{A} = -i\langle u(\mathbf{k}) | \nabla_{\mathbf{k}} | u(\mathbf{k}) \rangle$

Yan Meng

Background of topological insulators

Nat. Rev. Mater. 7, 974 (2022).

Background of topological insulators

Breaks time-reversal Quantum Hall effect Phys. Rev. Lett. **61**, 2015 (1988)

Yan Meng

Backgrounds of projective symmetry

Gauge flux

Background of topological acoustics

Yan Meng

Backgrounds of projective symmetry

Yan Meng

Backgrounds of projective symmetry

Motivation for spinful topological phases

Yan Meng

Analytical model for spinful topological phases

S

 $(\boldsymbol{PT})^2$

Topological classification under spacetime inversion symmetry (PT) and sublattice symmetry (S).

d = 3

d = 2

d = 1

Analytical model for spinful topological phases

Tight-binding model

Hamiltonian:

$$\begin{aligned} \mathcal{H} &= t_{y} \Gamma_{100} + t_{z} \Gamma_{301} + \sum_{\{s=d,o\}} \begin{bmatrix} 0 & u_{s} \\ u_{s}^{*} & 0 \end{bmatrix} \otimes M_{s} \\ \Gamma_{\mu\nu\lambda} &= \rho_{\mu} \otimes \tau_{\nu} \otimes \sigma_{\lambda}, \\ M_{d} &= \text{diag}(1,0,0,1), M_{o} = \text{diag}(0,1,1,0), \\ u_{d} &= t_{d,1} + t_{d,2} e^{-ik}, \text{ and } u_{o} &= t_{o,1} + t_{o,2} e^{-ik} \end{aligned}$$

Symmetry operators and \mathbb{Z}_2 *G*:

 $\hat{P} = \Gamma_{111}\hat{I}, \hat{T} = \hat{\mathcal{R}}, \hat{S} = \Gamma_{333}\hat{I}$ $\boldsymbol{G} = \Gamma_{003}, \mathcal{P} = \boldsymbol{G}\boldsymbol{P}.$

Topological classification:

Spin

Eigenstates: ψ_1 and ψ_2

Spins: $\psi_{+} = U\psi_{1} \text{ and } \psi_{-} = U\psi_{2}, U = e^{(i\pi/4)\Gamma_{100}}e^{-(i\pi/4)\Gamma_{133}}$ Pseudo time-reversal symmetry $\mathcal{P}T$: $\psi_{+} \stackrel{\mathcal{P}T}{\rightarrow} \psi_{-} \stackrel{\mathcal{P}T}{\rightarrow} - \psi_{+} \stackrel{\mathcal{P}T}{\rightarrow} - \psi_{-}$

Analytical model for spinful topological phases

Spinful topological phase transition:

Coupling contrast: $\Delta t = \frac{t_{d,1} - t_{d,2}}{2}$

Sample design and experimental demonstration

Experimental measurement of Kramers doublet

Sample design and experimental demonstration

Observation of Kramers pairs of topological boundary modes

Sample design and experimental demonstration

Topological interface between $\nu = +2$ and $\nu = -2$

Conclusions

> Designed a 1D topological acoustic crystals with a \mathbb{Z}_2 gauge field

Observed the Kramers double-degenerate band structures

> Observed the Kramers pairs of topological boundary modes

Observed the topological interface states between two spinful topological acoustic crystals with opposite winding numbers

Y. Meng et al, PRL **130**, 026101 (2023)

Other related works

Phononic crystals

Sci. China Phys. Mech. Astron. 65, 224611 (2022)

Acoustic crystals

Linyun Yang, Phys. Rev. Lett. 129, 125502 (2022). (Editor's suggestion)

Photonic crystals

Xiang Xi, et al, Nat. Commun. 14 1991 (2023)

Yan Meng

Acknowledgement

Group members in SUSTech:

NSFC Youth Project Shenzhen general project

Prof. Zhen Gao (SUSTech)

Prof. Yihao Yang (ZJU)

Prof. Hongxiang Sun (JSU)

Yan Meng

THANKS

Presentor: Yan MENG

Yan Meng